Network Intrusion Detection Using Data Mining and Network Behaviour Analysis
نویسندگان
چکیده
Intrusion detection has become a critical component of network administration due to the vast number of attacks persistently threaten our computers. Traditional intrusion detection systems are limited and do not provide a complete solution for the problem. They search for potential malicious activities on network traffics; they sometimes succeed to find true security attacks and anomalies. However, in many cases, they fail to detect malicious behaviours (false negative) or they fire alarms when nothing wrong in the network (false positive). In addition, they require exhaustive manual processing and human expert interference. Applying Data Mining (DM) techniques on network traffic data is a promising solution that helps develop better intrusion detection systems. Moreover, Network Behaviour Analysis (NBA) is also an effective approach for intrusion detection. In this paper, we discuss DM and NBA approaches for network intrusion detection and suggest that a combination of both approaches has the potential to detect intrusions in networks more effectively.
منابع مشابه
Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural network
Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011